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Tartan Racing developed 300 KLOC that represented over 14,000 modules and enabled our 

robot car “Boss” to win the DARPA Urban Challenge. This paper describes how any complex 

software system can be analyzed in terms of its reliability, its degree of maintainability, and 

ease of integration using applied flow-graph theory. We discuss several code coverage 

measurements and why this is important in certifying critical software systems used in 

autonomous vehicles.  Our paper applies cyclomatic complexity analysis to the winning 

DARPA Urban Challenge vehicle‟s software. We show graphical primitives followed by views 

of modules using those constructs. In this way minimum testing paths are quickly computed and 

viewed.  We argue for customizing evaluation thresholds to further filter the modules to a small 

subset of those most at risk. This “choosing our battles” approach works well when teams are 

immersed in a fast-paced development program.  
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Introduction 
 

Tartan Racing [1] developed 300 KLOC that represented over 14,000 modules that enabled their 

robot car “Boss” to win the DARPA Urban Challenge [2]. Over twenty software developers 

spent 14 months implementing code in six areas: Behavior, Mission Planning, Motion Planning, 

Infrastructure, Perception, and the vehicle itself. They used a Debian variant of Linux (Ubuntu 

LTS) and built 35 binaries with SCONS [3] instead of make. The code was installed on 10 Intel 

core2duo blade servers that resided in the hatch area of a 2007 custom Chevy Tahoe.  

 

The inter process communication was a distributed message passing system, supporting TCP/IP, 

UDP, and UNIX Domain Sockets as transport mechanisms. Processes communicated with one 

another locally on a machine via UNIX Domain Sockets, and remotely via TCP/IP.  All 

messaging went through an agent that was located on each machine.  Processes connected to the 

agent local to their machine, and all the agents connected to one another between machines in a 

full-mesh configuration. The system was formally tested for 65 days whereby two autonomous 

vehicles logged over 3,000 autonomous kilometers (1,864 miles) [4]. 

 

Such a system as described above is not uncommon for autonomous vehicles. While in 

development, these systems require testing for correctness, reliability, and maintainability.   

As these systems mature, performing software maintenance and modifications often overwhelm 

schedules and budgets. Fortunately, a series of metrics and related threshold values offers 

indications for when we should be concerned. At the very least testing should demonstrate: 

 

 The program fulfills specification – Verification 

 The program performs the required task – Validation 

 Modifications to existing good code do not produce errors – Regression testing 

 

However, this does not state which tests should be done or when the tests should be stopped. 

Furthermore, testing for quality attributes like maintainability and reliability are difficult enough 

when dealing with physical systems; when applied to autonomous vehicle software, the difficulty 

increases. However, quality features can be measured or deduced by inspecting the source code, 

assessing its features and looking for defects. This inspection technique is called static analysis. 

These can be manual or automated methods. A second method called dynamic analysis, tests for 

defects and code coverage by actually running instrumented software. The effort in both is to 

produce quantitative numbers about the software so resource decisions can be made. 

 

The testing community generally agrees that the following items contribute to the quality of code 

[5]: 

 

 Overall program structure 

 Program design techniques 

 Code readability 

 Code Complexity 

 Input/Output dependencies within programs 

 Data usage within programs 
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This paper focuses on automated software complexity testing as it relates to an autonomous 

vehicle application: specifically Tartan Racing‟s vehicle Boss. 

 

Code Size, Content, and Complexity 

 

Measuring software attributes falls into two camps:  

 Code size and content 

 Code complexity 

 

Code size is one of the easiest things to measure, giving rise to „line count‟ software metrics: 

 Lines of code 

 Lines of comments 

 Lines of mixed code and comments 

 Lines left blank 

 

Line counts do not tell us: 

 How difficult it is to understand the code 

 The mental effort needed to code a program 

 The algorithmic complexity of code units.  

 

One premise of using software complexity to measure software complexity is that bug-laden 

code is usually complex. Furthermore, complex components are also hard to understand, hard to 

test, and hard to modify. If we reduce the program complexity, the programs will improve. In 

fact, practical experience [6] has shown this to be true.  

 

Halstead‟s theory of software metrics [7] has its roots in evaluating complexity of low level 

programs like assembly language. He proposed a short set of measurable operator and operand 

quantities and then used them in equations to predict program features.  

 

McCabe‟s model for software 

metrics [8] determines the 

complexity of a program unit or 

module by measuring the amount of 

decision logic. The McCabe number 

is a predictive measure of 

reliability. In itself, the complexity 

value v(G) does not identify 

problems or errors but there is 

strong correlation between v(G) and 

code errors in case studies [6].   

 

Both Halstead and McCabe models are 

applied to real projects and are supported by commercial tools [9] [10]. This paper describes 

using the cyclomatic complexity metric v(G), i.e. McCabe number. 

Fig. 1- Bug-laden code is usually complex 
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Flow Graph Theory 
 

 The cyclomatic complexity metrics are described below. For any given computer program, its 

control flow graph, G, can be drawn. Each node of G corresponds to a block of sequential code 

and each arc corresponds to a branch of decision in the program. The cyclomatic complexity [9] 

of such a graph can be computed by a simple formula from graph theory, as: 

 

 V(G) = E − N + 2P  

where 

v(G) = cyclomatic complexity  

E = the number of edges of the graph  

N = the number of nodes of the graph  

P = the number of connected components.  

 

Cyclomatic complexity is alternatively defined to be one larger than the number of decision 

points (if/case-statements, while-statements, etc) in a module (function, procedure, chart node, 

etc.), or more generally a system. 

 

 

Complexity and Software Quality Attributes 
 

Quality Attributes are often called the non functional system requirements. They guide the 

system architecture, design and implementation. Understanding the quality attributes provides 

focus for the business drivers. Flow graph techniques make quantifying non functional properties 

like reliability, maintainability, and ease of integration possible. Not only can the techniques be 

automated, the results are non subjective and thereby helpful when making software resource 

decisions.  

 

Reliability- Cyclomatic complexity v(G) is a size indicator in that it measures the number of 

logical paths in a module. It is also the minimum number of tests needed to forecast high 

reliability. Cyclomatic complexity is often referred to as the McCabe number. Modules with 

numbers below a threshold of 10 are considered reliable. 

 

Maintainability- The Maintenance number ev(G) or “Essential” complexity measures the degree 

to which a module contains unstructured constructs. It is the reduction of cyclomatic such that 

only unstructured code remains in the flow graph. Studies show that code is harder to maintain 

when the ev(G) is above 4.  

 

Integration- The Integration number iv(G) measures the decision structure which controls the 

invocation of a module‟s immediate subordinate modules. It is a quantification of the testing 



Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 5 

effort of a module as it calls its subordinates. Modules with numbers above 7 are considered to 

require a significant amount of integration testing effort. 

 

 Figure 2 shows familiar software constructs as graphs. Each has nodes and edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - Flow Graph Primitives  
 

 

Maintaining code is difficult when there is 

a high degree of branching into and out of 

structures as seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - Unstructured Logic (hard to debug) 

 

If .. then If .. then .. else If .. and .. then If .. or .. then 

 
  

Do .. While While .. Do Switch 
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Minimum Path Coverage 
 

Time limits us from testing all statistical paths in even the simplest of software structures. The 

module shown in Figure 4 has one switch, an „if‟, and a loop statement. If one execution took 

one nanosecond, then testing all statistical paths would take 31 years. Instead, we test the number 

of unique closed loops in the module plus one. For example, in Figure 5 the software structure is 

a composite of the primitives described in Figure 2. There exist 9 closed conditions that result in 

10 paths to be tested. This will cover all the code and decision logic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - Test all statistical paths in a simple structure 

Fig. 5 - Minimum Test Paths 
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Selecting the Metric Threshold Values 
 

Tartan Racing developed, implemented, and qualified their autonomous vehicle software in 14 

months [12]. Over 20 software engineers contributed code. Complexity analysis started 10 

months into the program. A static complexity analyzer [9] looked at six sections for code 

reliability and maintainability. Together the sections contained over 15,000 modules. In the top 

chart of Figure 6 shows the lines of code (LOC) while in the bottom chart the cyclomatic 

complexity and essential complexity (maintenance) are shown. The tool‟s computation time for 

each section was approximately ten minutes running on a 1.2 GHz processor. The threshold 

value for complexity is 10 and for maintainability it is 4. Tartan Racing‟s average numbers were 

well within the threshold values except for a few modules that were an order of magnitude over. 

These were identified to the software leadership in both list and scatter graphs forms. Figure 7 

shows scatter graphs for three of the six software sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 - LOC, complexity, and maintainability measurements 
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The modules of interest for Tartan Racing were in the scatter graph‟s upper right quadrant 

because these modules were both unreliable and not easy to maintain. The lower right quadrant 

was the least populated. The number that exceeded the threshold of 10 for complexity and 4 for 

maintenance were too many for the software team to review given their tight delivery schedule. 

Therefore, the analyst changed the complexity threshold from 10 to 22. This decreased the 

number of unreliable modules needed for peer reviews. The analyst raised the threshold based on 

the development team‟s software maturity level. He reasoned that in the ADA language, twenty-

two can be an acceptable complexity threshold because of team discipline. That and a need to 

“pick our battles” were the reasons the analyst raised the complexity threshold.  

 

Maintaining the code was secondary to having reliable code. While the developers knew 

intuitively which modules were hard to de-bug, a quantitative metric helped the software leader 

plan when modules would be ready.  For similar reasons given for complexity, the analyst raised 

the code‟s maintenance threshold from 4 to 10. 

 

Code Coverage Levels 
 

Code coverage is a measure of what software ran during testing. When code coverage tools using 

source-code based techniques are used, it inherently means the code was instrumented, and 

coverage results are gleaned from log data. Code coverage analysis is especially useful for 

troublesome modules and program sections. Moreover, mission critical software should be 

validated according to a determined level of code verification. Figure 8 shows several increasing 

code coverage levels, with two alternatives for very thorough techniques for mission critical 

verifications. 

 

The first code coverage level, “Module” is simply knowing the module was entered and keeping 

a count. The second level, “Line”, counts whether any part of a line was performed. An example 

Fig. 7 - Example of Scatter Graphs 
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is that the following line is counted as executed whether the decision's true outcome or false 

outcome is executed. Branching is not counted at this level.  

 

 

   if A = B do C else do E 
 

 

For mission critical software like sections of autonomous vehicle code, one looks to at least the 

“Branch” coverage level. For the statement above, the true outcome of the decision would be 

counted as one branch, and the false outcome as a second branch, and the execution of each 

would be counted separately. 

 

If more thoroughness is desired, then one of two alternatives might be taken, depending on the 

mission requirement. One alternative is Boolean or Modified Condition/Decision Coverage 

(MCDC) coverage. In the example of the following code, 

 

   if A or B or C do E 
 

MCDC coverage requires that all three conditions of this decision be checked separately. For 

airborne software to be certified, it must comply with the FAA's D0-178B code structure 

coverage criterion. While DO-178B does not explicitly accept cyclomatic complexity data, 

depending upon the level of criticality (C, B or A) increasing code coverage is required.  Level C 

requires that a test case (and requirement) trace to every code statement.  Level B to every code 

branch (specified path), and Level A to every MCDC.   DO-178C (due in 6-8 months) will allow 

some credit for modeling under some conditions. 

 

Cyclomatic complexity coverage (or basis path coverage) as defined in the Structured Testing 

methodology [6] is a valid alternative for thorough code coverage. This methodology indicates 

that the minimum number of tests required for high reliability is equal to the Cyclomatic 

complexity; the number of linearly independent paths through a graph of a software unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 Fig. 8- Code Coverage Levels 
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Future Work 
 

Tartan Racing‟s schedule and late exposure to complexity analysis did not allow for 

implementing code coverage. A proof of concept showed that the code could be easily 

instrumented and results achieved quickly, Figure 9.  When the “BehaviorTask” binary was 

executed for one minute, 82 of 928 modules had some coverage.  The tool [9] can provide all of 

the discussed levels of code coverage. Future work remains to evaluate the effects of 

instrumented code on the application‟s performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Summary 
 

We established that there are metrics and related threshold values for software quality attributes 

like reliability, maintainability, and ease of integration. There are tools that quickly compute 

these values without running the application. Scatter graphs help us visualize the modules 

belonging to the quadrant of unreliable and hard to maintain domain. To prioritize which 

modules to select for analysis, the tool's standard threshold values were increased. The rationale 

was one of team software maturity level and the need to meet delivery of the application in four 

months. This helped focus the developers on the most at-risk modules. Moreover, software 

developers can tactically select which modules need peer-reviews based on the module's code 

complexity. Program managers can set realistic times to fix code based on the use of 

unstructured code.  
 

We also established that Cyclomatic complexity can determine how many code coverage-related 

tests should be performed and when testing can stop. We presented several levels of code 

Fig 9 - Proof of Concept- Code Coverage for “Behavior Task” 
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coverage that can be measured, using instrumented software. The simplest was the module 

coverage level, then line coverage level.  But for mission critical software like autonomous 

vehicles, at least branch coverage should be used, and for certain components requiring very high 

reliability, there were two recommendations; coverage of every Boolean condition (MCDC) or 

meeting the cyclomatic path or basis path coverage criteria. Certainly both can be applied. The 

benefit of the most thorough levels of code coverage is assurance that the right tests were 

performed to predict a low occurrence of errors. Equally important is that the code coverage 

process is automated, thus providing quick, non subjective results. Finally, work remains to 

understand how instrumented code affects the system's performance.  
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